Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

Identifieur interne : 000E48 ( Main/Repository ); précédent : 000E47; suivant : 000E49

Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

Auteurs : RBID : Pascal:13-0255686

Descripteurs français

English descriptors

Abstract

Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0255686

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn
<sub>2</sub>
Se
<sub>4</sub>
thin films</title>
<author>
<name sortKey="El Nahass, M M" uniqKey="El Nahass M">M. M. El-Nahass</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Faculty of Education, Ain Shams University</s1>
<s2>Roxy, Cairo 11757</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Roxy, Cairo 11757</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Attia, A A" uniqKey="Attia A">A. A. Attia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Faculty of Education, Ain Shams University</s1>
<s2>Roxy, Cairo 11757</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Roxy, Cairo 11757</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salem, G F" uniqKey="Salem G">G. F. Salem</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Faculty of Education, Ain Shams University</s1>
<s2>Roxy, Cairo 11757</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Roxy, Cairo 11757</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ali, H A M" uniqKey="Ali H">H. A. M. Ali</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Faculty of Education, Ain Shams University</s1>
<s2>Roxy, Cairo 11757</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Roxy, Cairo 11757</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ismail, M I" uniqKey="Ismail M">M. I. Ismail</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Faculty of Education, Ain Shams University</s1>
<s2>Roxy, Cairo 11757</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Roxy, Cairo 11757</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0255686</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0255686 INIST</idno>
<idno type="RBID">Pascal:13-0255686</idno>
<idno type="wicri:Area/Main/Corpus">000962</idno>
<idno type="wicri:Area/Main/Repository">000E48</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Crystallinity</term>
<term>Deposition rate</term>
<term>Energy gap</term>
<term>Extinction index</term>
<term>Indium Zinc Selenides Mixed</term>
<term>Nanocrystal</term>
<term>Nonlinear optical susceptibility</term>
<term>Optical transition</term>
<term>Refractive index</term>
<term>Substrat temperature</term>
<term>Thermal annealing</term>
<term>Thickness</term>
<term>Thin films</term>
<term>Vacuum evaporation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit thermique</term>
<term>Température substrat</term>
<term>Susceptibilité optique non linéaire</term>
<term>Evaporation sous vide</term>
<term>Vitesse dépôt</term>
<term>Cristallinité</term>
<term>Epaisseur</term>
<term>Indice réfraction</term>
<term>Indice extinction</term>
<term>Coefficient absorption</term>
<term>Transition optique</term>
<term>Bande interdite</term>
<term>Couche mince</term>
<term>Indium Zinc Séléniure Mixte</term>
<term>Nanocristal</term>
<term>7867B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Zinc indium selenide (ZnIn
<sub>2</sub>
Se
<sub>4</sub>
) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn
<sub>2</sub>
Se
<sub>4</sub>
was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn
<sub>2</sub>
Se
<sub>4</sub>
thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy E
<sub>o</sub>
, dispersion energy E
<sub>d</sub>
, dielectric constant at infinite frequency ε∞, and lattice dielectric constant ε
<sub>L</sub>
were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy E
<sub>d</sub>
. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>425</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn
<sub>2</sub>
Se
<sub>4</sub>
thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EL-NAHASS (M. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ATTIA (A. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SALEM (G. F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ALI (H. A. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ISMAIL (M. I.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department, Faculty of Education, Ain Shams University</s1>
<s2>Roxy, Cairo 11757</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>23-30</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000503644140050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0255686</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Zinc indium selenide (ZnIn
<sub>2</sub>
Se
<sub>4</sub>
) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn
<sub>2</sub>
Se
<sub>4</sub>
was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn
<sub>2</sub>
Se
<sub>4</sub>
thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy E
<sub>o</sub>
, dispersion energy E
<sub>d</sub>
, dielectric constant at infinite frequency ε∞, and lattice dielectric constant ε
<sub>L</sub>
were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy E
<sub>d</sub>
. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Température substrat</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Substrat temperature</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Temperatura substrato</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Susceptibilité optique non linéaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nonlinear optical susceptibility</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Evaporation sous vide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Vacuum evaporation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Vitesse dépôt</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Deposition rate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Velocidad deposición</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indice extinction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Extinction index</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Indium Zinc Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium Zinc Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7867B</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>245</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0255686
   |texte=   Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024